Ultrastructural changes of neuronal mitochondria after transient and permanent cerebral ischemia.

نویسندگان

  • Nina J Solenski
  • Charles G diPierro
  • Patricia A Trimmer
  • Aij-Li Kwan
  • Gregory A Helm
چکیده

BACKGROUND AND PURPOSE Mitochondrial swelling is one of the most striking and initial ultrastructural changes after acute brain ischemia. The purpose of the present study was to examine the role of reperfusion of the cerebral cortex after transient focal cerebral ischemia on neuronal mitochondrial damage. METHODS Male Sprague-Dawley rats (n=16) were subjected to either temporary or permanent occlusion of the middle cerebral artery and bilateral carotid arteries. Three experimental conditions were compared: group I, permanent ischemia (3, 5, and 24 hours); group II, transient ischemia (2, 24 hours of reperfusion); and sham surgery. Anesthetized rats were killed by cardiac perfusion, and brain tissue was removed ipsilaterally and contralaterally from the ischemic core section of the frontoparietal cortex. Fixed tissue was prepared for electron microscopic examination, and electron microscopic thin sections of random neurons were photographed. Perinuclear neuronal mitochondria were analyzed in a blinded manner for qualitative ultrastructural changes (compared with sham control) by 2 independent investigators using an objective grading system. RESULTS Cortical neuronal mitochondria exposed to severe ischemic/reperfusion conditions demonstrated dramatic signs of injury in the form of condensation, increased matrix density, and deposits of electron-dense material followed by disintegration by 24 hours. In contrast, mitochondria exposed to an equivalent time of permanent ischemia demonstrated increasing loss of matrix density with pronounced swelling followed by retention of their shape by 24 hours. CONCLUSIONS Neuronal mitochondria undergoing transient versus permanent ischemia exhibit significantly different patterns of injury. Structural damage to neuronal mitochondria of the neocortex occurs more acutely and to a greater extent during the reperfusion phase in comparison to ischemic conditions alone. Further research is in progress to delineate the role of oxygen free radical production in the observed mitochondrial damage during postischemic reoxygenation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

L-NAME and 7-Nitroindazole Reduces Brain Injuries in Transient Focal Cerebral Ischemia in Rat

Background: The role of nitric oxide (NO) of endothelial or neuronal origins in cerebral ischemia and reperfusion injuries are far from being settled, extending from being important to not having any role at all.  Objective: To investigate the role of NO of endothelial and neuronal origins in ischemia/reperfusion injuries in focal cerebral ischemia, L-NAME, a non selective NO synthase inhibitor...

متن کامل

Difference in transient ischemia-induced neuronal damage and glucose transporter-1 immunoreactivity in the hippocampus between adult and young gerbils

Objective(s): The alteration of glucose transporters is closely related with the pathogenesis of brain edema. We compared neuronal damage/death in the hippocampus between adult and young gerbils following transient cerebral ischemia/reperfusion and changes of glucose transporter-1(GLUT-1)-immunoreactive microvessels in their ischemic hippocampal CA1 region. Materials and Methods: Transient cere...

متن کامل

The Effect of Diazoxide on Ultrastructural Changes Following Ischemia-Reperfusion Injury of Rat Brain

A B S T R A C T Introduction: Even today there is no effective drug therapy to prevent neuronal loss after brain stroke. In the present study we studied the effect of mitochondrial KATP channel regulators on neuronal ultrastructure after ischemia reperfusion in the rat. Materials & Methods: Rats temporarily subjected to four vessels occlusion for 15 minutes followed by 24 hours reperfusion with...

متن کامل

Chromon-3-aldehyde derivatives restore mitochondrial function in rat cerebral ischemia

Objective(s): This work aimed to assess the effect of 10 new chromon-3-aldehyde derivatives on changes of mitochondrial function under the conditions of brain ischemia in rats. Materials and Methods: The work was executed on BALB/c male-mice (acute toxicity was evaluated) and male Wistar rats, which were used to model cerebral ischemia b...

متن کامل

P18: Neuroprotective Effect of Safranal, an Active Ingredient of Crocus Sativus, in a Rat Model of Transient Cerebral Ischemia

Safranal is a monoterpene aldehyde found in saffron (Crocus sativus L.) petals. It has been previously reported that safranal has a wide range of activities such as antioxidant and anti-inflammatory effects. In this study, we examined the effect of safranal on brain injuries in a transient model of focal cerebral ischemia. Transient focal cerebral ischemia was induced by middle cerebral artery ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Stroke

دوره 33 3  شماره 

صفحات  -

تاریخ انتشار 2002